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SUMMARY 

Numerical solutions to the Navier-Stokes equation may provide designers with predictions of the wind 
environment of buildings under design. To investigate this possibility, two complementary solution 
procedures are implemented for two-dimensional geometry: a random vortex method to depict the flow 
evolution, and a control volume method to depict the steady flow field. These are both illustrated by 
specific application to the case of a building form with a roof  of arbitrary pitch. 
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INTRODUCTION 

The quality of architectural and urban design can be improved by some assessment of the 
consequences of a proposed building for its wind environment. Ideally such an assessment 
should inform the design from its inception.’ At any stage it should provide some description 
of a building’s wind micro-climate and an estimate of the implications of this both for the 
building’s energy performance and for human comfort in the surrounding urban space. For 
such a procedure to be useful to a designer it ought to be reasonably accessible and 
immediate and it ought to be sufficiently versatile to accommodate groups of buildings of 
some geometrical complexity. 

The wind environment of proposed buildings has usually been studied in the past by 
scale-model experiments in wind-tunnels. The execution of such experiments is seldom 
immediate since they require access to a wind-tunnel and to the expertise of wind-tunnel 
personnel. Of course, protraction of the design process is usually expensive: in the context of 
architectural practice there has been little commercial incentive to take any detailed interest 
in problems related to the wind environment. The expense and experimental difficulty which 
attend wind-tunnel modelling suggest that a computer simulation of wind flow around built 
form could be of advantage as an alternative (and complementary) approach to  the problem. 

The numerical calculations associated with wind flow around buildings require the solution 
of the Navier-Stokes equation for the case of slightly viscous flow around large-scale bluff 
bodies. This is therefore a problem characterized by high Reynolds number (typically Re is 
of order lo6) and by a flow field which is sharply separated and which is normally turbulent. 

and is 
typically some centimetres thin. If numerical solution is to be effected by approximating the 
differential equation by its equivalent difference equations, then an ideal grid configuration 
would have to encompass the detail of this boundary layer as well as the full expanse of the 
developed flow. In many engineering contexts it is difficult to  contrive a configuration which 
leads to a solution both computationally efficient and acceptably accurate. 

The surface boundary layer on the building itself will have thickness of order 
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Therefore we may ask: what accuracy would be acceptable in a numerical scheme to assess 
the wind environment of a proposed building? Various comparisons have been reported 
between measurements from scale-model wind-tunnel experiments and measurements from 
corresponding in situ full-scale experiments: these would suggest that the wind-tunnel can 
simulate the wind environment to within 20 per cent accuracy.233 Thus we must expect at 
least this level of accuracy if a numerical flow solution is to be acceptable. 

The computations required for structural loading calculations-as distinct from those for 
environmental problems-may require a level of accuracy more stringent than 20 per cent. 
We shall confine our attention here to the wind environment of a building, although we also 
briefly allude to the possible application of numerical techniques to problems of wind 
loading. 

We have investigated two numerical methods for solving the Navier-Stokes equation (for 
two dimensional geometry) which provide plausible, stable solutions at high Reynolds 
number. The solutions obtained from these methods appear to be in qualitative agreement 
with each other and with wind-tunnel experiments. The claims of the originators of both 
methods would suggest to  us that the formal accuracy of either method meets our require- 
ments for the construction of a design tool. 

NUMERICAL METHODS 

Two quite different numerical methods suggest themselves for this problem: the random 
vortex method developed by Chorinb6 and a control volume which has been 
applied to an environmental problem by Caretto et aL9 We shall describe both methods 
briefly. 

The random vortex method 

Reviews of vortex methods are to be found in References 10 and 11. Chorin's method has 
in common with other vortex methods the grid-free representation of flow dynamics in terms 
of discrete vortices. 

The incompressible flow of a slightly viscous fluid around a bluff body can be often 
characterized by three flow regimes: away from the body the flow may be largely irrotational 
and may be thus formulated in terms of potential theory; in the immediate neighbourhood of 
solid surfaces a boundary layer is formed; beyond this boundary layer and in the downstream 
wake of the obstacle there is formed a region of concentrated vorticity which has been 
generated by the viscous interaction of the fluid with the obstacle. Vortex methods seek to 
approximate this entire flow field by considering it to  consist everywhere of a superposition 
of an inviscid irrotational flow together with a flow induced by the fluid's distributed 
vorticity. To achieve this numerically, the vorticity is discretized and the evolution of the flow 
is accomplished by the fact that, so far as their inviscid motion is concerned, point vortices 
convect in the local velocity field. Thus, as time progresses, the vorticity redistributes itself 
and the corresponding velocity field induced by this vorticity will also evolve in time. 

The fact that the method is grid-free is of particular importance. When a mesh is imposed 
on the solution domain and equivalent difference equations are posed for the Navier-Stokes 
equation, then the order of this numerical approximation can be the same as that of the 
viscous diffusion term in the equation. This gridding of the domain has the effect of 
introducing artificial viscosity into the computation. Chorin, on the other hand, represents 
the diffusive contribution to the motion of a discrete vortex by imparting to it after each time 
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interval dt a Gaussian random displacement (q,., q,,) with zero mean and standard deviation 
(2 dt/Re)l”; this is in analogy with Einstein’s stochastic treatment of Brownian motion. The 
error associated with this representation lies in the approximation of the interaction between 
discrete vortices, and this should be an ‘inviscid error’ which does not depend functionally on 
Reynolds number.6 

The nature of this approximation can be described in the specific context of a wind flow 
past a two-dimensional bluff body resting on the surface of the semi-infinite half -space 
occupying y <0  of the (x, y)  plane. Outside the boundary layer of the surface of the obstacle 
(which is to be treated separately) the Navier-Stokes equation is expressed in dimensionless 
form in terms of scalar vorticity ( and the velocity field u = (u, u )  by 

%+ (u . V)C = Re-’vz( (1) 
at 

So far as the inviscid component of flow is concerned, we can relate vorticity to a stream 
function + by 

v2qi = -5 (2) 

The velocities can then be determined as 

u=(u,u)= -, -- E; 3 (3) 

The boundary conditions to be satisfied at solid surfaces consist of the impermeability 
condition 

u.n=O (4) 

and the condition of no-slip, 

u . s = o  

(n and s are unit vectors respectively normal and tangential to the solid surface). The solution 
to equation (2)  may be expressed in terms of its Green’s function by 

+(I)= - ((I‘)G(I 1 I ’ ) ~ I ’  I 
where r=xi+yj ,  r’=x’i+y’j, and 

G(r \ r’) = (2r)-’{log lr-1‘1-log Ir-r*\> (7) 

with r* = x’i- y’j, so r* is the reflection of r’ across the boundary y = 0 where we require 
G(r 11’) to satisfy condition (4). 

The discretization of vorticity ((I) can be effected by considering it to result from a 
distribution of point vortices located at positions {Ti} each with vorticity 6 = Ti8(rj -r); Ti is 
the circulation of the jth vortex, 6 is the Dirac S-function. We can write 

and substitute this expression into equation (6). Through equation (3) we can obtain an 
expression for the velocity field induced by [(I) directly in terms of summations over the 
discrete vortices. This formulation of the discrete problem does not usually provide stable 
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solutions in regions of high vorticity because at small separation the interaction implied by 
(7)  and (8) becomes singular. The Green’s function (7) may be modified to suppress this 
singularity by considering a form 

where CT is some appropriate core size to be determined. Leonard” describes alternative 
modifications which achieve a similar result. 

This effectively provides an algorithm which can determine a velocity field uE(r) induced at 
a point r by a collection of discrete vortices {t,}. These vortices will convect in a superposi- 
tion of this field together with the potential field u,. In Reference 4 it is shown how a 
potential field may be computed to impose condition (4) at the obstacle, i.e. we require 

u . n = (uc + u,) . n = 0 (10) 

at the solid boundary of the obstacle. Again the method of images can be invoked to 
represent the velocity potential cp (with u, = grad cp) in terms of a Green’s function 

q(r) = y(r’)G(r 1 r’) dr’ (11) + 
This line integration is taken over the perimeter of the obstacle together with its mirror 
image in y < O ;  in principle any two-dimensional geometry can be accommodated by this 
procedure. The function y(r’) is an unknown source distribution and substitution of u, into 
(10) leads to an integral equation which may be discretized and cast into matrix form 

A . y = b  (12) 

The column vector b is 2u,. n evaluated along the boundary. The matrix A is a function 
only of the geometry of the obstacle and of the irrotational flow field. This implies that A 
need only be inverted once at the outset of the calculation. Thus, at a given timestep we 
solve (12) for y and hence evaluate u, from the grad operating on cp expressed by (11). In a 
time interval dt, the displacements (dx,, dy,) of the jth discrete vortex 5, are hence given by 

d% = 

dyj ={V,(rJ)+Ve(rI)}dtS7)Y 
(rj + ue (rJ >> dt  + TX 

where (yx, qy) is the diffusive random displacement we have described previously. 
The random vortex method aims to simulate completely the physics of incompressible flow 

at high Reynolds number. To complete the simulation it remains to describe the mechanism 
of vortex generation at the solid boundary of the obstacle. The details of this are described in 
Reference 5. It will be noted that the flow field u = u, +u, does not as yet satisfy the no-slip 
condition (5).  We may imagine the formation of a shear layer parallel to the surface of the 
obstacle. This will be comprised of vortex sheets (which we discretize into sheet segments) 
which are of sufficient intensity and distribution to satisfy condition (5) at each point of the 
surface. As time progresses the diffusion and convection of these segments into the flow 
creates a boundary layer. Vorticity in this layer is assumed to satisfy the Prandtl boundary 
layer equations. When vortex sheets of intensity K, and sheet length h leave the boundary 
layer into the flow beyond, they become the discrete vortices ,$, we have previously 
discussed, with t, = hK,. If a core size of CT = hln- is chosen in equation (9), then near the 
interface between the boundary layer and the external flow, the interaction of the vortex 
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sheets { K ~ }  approximates the interaction of the discrete point vortices {&} (see Reference 12 
for details). 

The method we have described can provide a solution for the time-evolutionary laminar 
flow of wind over a two-dimensional building of arbitrary shape in cross-section. The method 
is computationally efficient and good agreement with experiment has been reported in other 
engineering contexts. l2 Unfortunate1,y the extension of this method to three dimensional 
building shapes does not seem to be a trivial one, although some three-dimensional 
applications of the method have been reported in other aerodynamic contexts.6z10 A 
mathematical discussion of the ‘inviscid error’ of the method is provided by Leonard.”’ 
There has been some suggestion6 that turbulent effects can be observed in random vortex 
solutions, although such effects may be submerged by the grain of the vortex discretization. 
The method does not require a priori knowledge of the location of flow separation 
points-these arise naturally out of the solution procedure. In this respect the method would 
seem to offer some advantage over various other discrete vortex methods which have been 
reported (e.g. see References 13 and 14). 

A control volume method 

There are a number of ways of constructing the finite-difference analogue to the Navier- 
Stokes equation; although it may be shown that the different approaches to this problem are 
equivalent” they may exhibit quite different qualities so far as computational efficiency and 
stability are concerned. The control-volume approach has provided efficient and stable 
solutions for a wide range of problems. The particular control volume method we adopt is 
that described by Caretto et al.,9 the method and its antecedents have been applied to 
problems characterized by high Reynolds number and the effect of Reynolds number and 
mesh size on such solutions has also been documented (e.g. Reference 7). 

The method owes something of its stability to the fact that it does not derive directly from 
the continuum differential equations themselves, but from the macroscopic conservation laws 
which give rise to these equations.” We shall consider the case of a steady-state flow field, 
i.e. du/dt = 0. The fluid space is divided into cells (in three dimensions these are ‘control 
volumes’) and around the perimeter of each cell we require that the net rate of convective 
plus diffusive inflow of momentum per unit volume vanish when this is added to the 
momentum sources internal to the cell. 

We consider the flow of an incompressible fluid of uniform density p so that the 
momentum balance can be expressed (in continuum form) for the x-direction as 

where p is the viscosity of air; Q represents the source terms to be associated with the 
horizontal velocity component u (these consist of the pressure gradient ap/dx, and in regions 
of fluid adjacent to a solid boundary a shear stress term is also present). Corresponding to 
(13) there also exists a similar equation for the vertical velocity component, 2). 

The fluid is divided into control cells by a set of grid lines as depicted in Figure 1. The 
variables to be associated with the ith cell (central in Figure 1) are the velocity components 
(4, vi) and the pressure pi. For convenience in computing intercell mass fluxes and pressure 
gradients, the velocity components are taken to be those at the mid-point of the cell edges 
whereas the pressure is evaluated at the central ‘node’ of each cell. This results in a grid 
system which is staggered. We use the convention that the velocity components to be 
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Figure 1. Grid arrangement for control volume method 
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associated with the ith cell are located between the cell and its neighbours to the east and 
north: thus in subsequent notation u, and ui are to be understood as equivalent to u, and u, 
respectively. 

The method consists of two nested iterations. Prior to the first iteration an initial guess at 
the velocity field and pressure fields is made which should satisfy mass conservation but 
which is otherwise arbitrary. (Such an initial field can be determined from a potential flow 
calculation.) Thus at the start of each 'outer' iteration a velocity field exists which satisfies 
continuity (either from a previous 'inner' iteration, or from the initial guess), but this field 
does not in general satisfy momentum conservation. Horizontal momentum conservation at 
the ith control cell in relation to its four neighbours (labelled e, w, n, s in Figure 1) can be 
expressed 

&( c (mass outflow from i to j )  + Q, {(mass inflow from j to i)z+}+ Q, (14) 
I 

where the summation is taken over j E {e, w, n, s}. The terms Q, and Q, represent, respectively, 
the source terms for wall shear stress and pressure forces. Since the velocity field satisfies 
continuity, i.e. since 

C (outflow from i to j )  = 1 (inflow from j to i) (15) 
I i 

then equation (14) can be rearranged to obtain an expression for an intermediate velocity 4 
where 

4 =  { i  ca,z++Q, ]&+QJ (16) 

where we have followed Reference 8 in defining local transport coefficients {ai} by 

aj = pSli{/-ddi +max (0, (-l)mqj)} (17) 
In (17) qi is either ui or ui depending upon whether the jth neighbour cell is horizontally or 
vertically situated with respect to the ith cell. The factors Si, etc. are the surface 'areas' of the 
various control volume faces (or in our two-dimensional case, the 'lengths' of the control 
cell edges), and di is the distance between adjacent cell nodes. The first term in the square 
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brackets represents a diffusive contribution and the second is a convective 'upwind' contri- 
bution. (The index rn in (17) is an odd integer when i E{e, n} and even when i E{W, s}.) 

Equation (16) represents a linear approximation to the momentum transport equation for 
u. The non-linear effects of the convective terms are introduced by iteration of (16) using 
updated values of velocity fields and source terms. However the ( i& ,G , )  values cannot be used 
directly as input to the next iteration, since they do not in general satisfy the continuity 
condition, which requires that the sum of inward convective mass fluxes to each cell must 
vanish; this can be expressed as 

CS=O 
i 

where we define ?j = (-l)"pSj& If (18) is not satisfied for a given 'outer' iterate (G, G i ) ,  then 
balance may be restored (following Reference 9) by computing a pressure increment dp, such 
that 

where xi ci = 0, and the partial derivatives Xilap are determined from the intermediate 
velocity field by 

If the pressure source is expressed as Q, = Si(pi -pi) then equation (16) implies that 

Combining equations (18) and (19) leads to the finite difference analogue of a Poisson's 
equation for dpi, 

This equation may be solved by various iterative  method^.'^ We chose to use a successive 
over-relaxation method because of the ease with which arbitrarily shaped boundaries may 
be handled. In addition, it may be shown that X i l a p  and Q, are strictly non-negative so 
equation (21) possesses weak diagonal dominance: this ensures that a successive over-relaxa- 
tion iteration scheme will be convergent. 

Solution of (21) constitutes the 'inner' iteration of our algorithm. After a converged 
solution to (21) is obtained during the kth 'outer' iteration, the velocity and pressure fields are 
updated to satisfy continuity through 

These velocity and pressure fields (which will now no longer in general satisfy momentum 
conservation) may be substituted back into equation (16) and the 'outer' iteration repeated. 
The whole nested procedure is repeated until both momentum conservation and the 
continuity condition are simultaneously satisfied to a specified level of accuracy. The method 
used for the outer iteration should be one which preserves the continuity-satisfying velocity 
field while the intermediate field is computed, We have therefore adopted a scheme based on 
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simple Jacobi iteration which, despite its relatively slow convergence rate, is simple to 
implement for irregular boundaries. 

The method we have just described is extremely versatile and robust. In addition to the 
problem we have posed, more complicated problems can be treated involving body forces, 
such as buoyancy, and the effects of heat transfer; semi-empirical turbulence models can be 
introduced directly into the algorithm. There is considerable flexibility in the geometry of 
boundaries which can be considered. From the point of view of architectural problems, 
perhaps the most crucial attribute is the ease with which this method extends into three 
dimensions. 

SOME EXAMPLES OF NUMERICAL FLOW SIMULATION 

To illustrate both methods we consider wind flow over a two-dimensional structure with a 
symmetrical roof of arbitrary pitch. Such a pitched roof is obviously a common building form 
and has been the subject of considerable experimental study. Since it is a bluff body of some 
geometrical complexity, it can illustrate the various advantages of the particular methods we 
have adopted. 

Application of the random vortex method 

We intend to compute solutions to the Navier-Stokes equation (1) in terms of the 
dimensionless variables u, r, and t, which can be transformed into dimensional variables in 
the usual way by specifying a standard scale length L and scale velociry U. Thus dimensional 
variables ii, r", and 7 may be determined from 

i i=uU; f = r L ;  f = t T  

with T = L/U. For architectural problems L may be chosen to be the building height and U 
the free-stream velocity at the ridge height; typical values of these scale parameters might be 
U = 2.5 m/s, L = 10 m; hence T = 4 s. 

The geometry of the pitched roof obstacle explicitly enters through the potential flow 
calculation since the line-integration (11) is taken over the perimeter of the building in 
section (together with its contiguous mirror image across y = 0). Discrete expression may be 
given to this geometry by defining a collection of 'body points' along this perimeter dividing 
it into linear increments. At  each body point we also require to know n and s, the unit 
vectors normal and tangential to the building surface. Also, a boundary layer region is 
defined along the surface, some standard deviations thick; a mirror image of this layer 
'below' the surface of the building is also defined. 

In constructing the potential flow u, some description of the atmospheric boundary layer 
is desired. To do this it is assumed that the wind in the absence of the building (i.e. the 
free-stream wind) flows horizontally with a vertical profile given by 

The height to  the top of the boundary layer-i.e. the gradient height, yg-is taken to be 20 
units; the exponent a = 0.29 corresponds to a profile associated with a suburban environ- 
ment. The wind speed at y = y g  is taken to be 4 dimensionless units. The free-stream velocity 
is to be considered implicit in the notation uE(r). 

It is assumed that a wind with this prescribed profile will start up impulsively at t = 0. At 
this first time-step there are no discrete vortices yet in the flow and uE consists entirely of the 
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free-stream velocity field. The potential flow is calculated such that (4) is satisfied on the 
surface of the building: the sum ug +u, corresponds to the flow field in the absence of the 
viscous effects of the obstacle. In order to impose the no-slip condition (5) a distribution of 
vortex sheet segments are entered into the flow at each body point; these diffuse by a 
random displacement (q,., q,) normal to the building surface. At subsequent time-steps uc 
will also include a velocity component induced by the pre-existent vortex sheets. Otherwise 
the calculation proceeds as in the first time-step. A new set of vortex sheets is created at the 
body points and these diffuse into the boundary layer: the sheets created in previous 
time-steps convect in the local velocity field as well as diffusing. 

The success of the random vortex method depends upon an accurate representation of the 
boundary layer; the detailed description of this is to be found in Reference 5 .  When the 
sheets leave the boundary layer into the flow beyond, they become discrete 'point' vortices 
interacting with each other according to (9). If the sheets migrate into the image boundary 
layer, they are reflected back out into the boundary layer proper. If the sheets pass into the 
deeper interior of the building, they are removed from the flow calculation. Similarly, if they 
pass into the region y < O ,  or pass beyond the region of interest (i.e. if they convect 
sufficiently far downstream so that they retain relatively little influence over the flow near the 
building) then these too are removed from the calculation. 

Figure 2 illustrates streak-line diagrams for a typical flow solution. The Reynolds number 
of this flow is Re = lo6; the ridge height of the building is 1 unit, the pitch is 45". The 
building geometry is numerically specified by 40 body points. The discrete vortices are 
removed from the computation after they have convected a distance greater than 8 
dimensionless units downstream. 

The six frames of Figure 2 illustrate equally-spaced excerpts from the first 80 timesteps 
after flow initialization: each timestep is 0.02 dimensionless units in duration, so the full 80 
steps correspond to 6.4 s if T = 4 s. Each streak in frame 1 represents the three timesteps 12 
to 14: by timestep 14 there are 185 discrete vortex elements entered into the flow. Similarly 
in frame 2, steps 24 to 26 are represented (with 243 vortex elements); frame 3, steps 36 to 
38 (290 vortex elements); frame 4, steps 48 to 50 (328 vortex elements); frame 5, steps 60 to 
62 (346 vortex elements); frame 6, steps 72 to 74 (408 vortex elements). 

In the first frame of Figure 2 a separation zone may be seen to develop at the leeward 
roof. A recirculation eddy forms in this zone: in frames 2-6 this eddy detaches itself from the 
building and forms the downstream wake. Eventually it is washed out of the solution, while a 
new eddy is formed at the roof. The process is repeated and there ensues a sequence of 
vortex shedding at the roof. Because of its impulsive character, the recirculation eddy 
associated with the initial conditions is probably anomalous, but as time progresses the 
shedding sequence becomes increasingly regular. 

Figure 3 illustrates the flow later in its development, between timesteps 320 and 400. Each 
streak in frame 1 of Figure 3 represents timesteps 332 to 334, with 860 discrete vortices 
entered in the flow; frame 6 represents steps 392 to 394 with 885 discrete vortices in the 
flow. One may observe in Figure 3 an eddy sequence. The Strouhal number determined from 
the first four eddies in this simulation is approximately 0.3 (taking the ridge height of the 
building to be the wake width, and the characteristic velocity to be the free-stream at the 
ridge). The 'dimensional' shedding frequency associated with Figures 2 and 3 will be 
proportional to T1, and hence to U (if L is kept constant). This is consistent with 
experimental observations.16 Figures 2 and 3 bear an interesting comparision with well- 
known water-tunnel photographs (e.g. see plate 9 in Reference 17). 

The fact that time-evolutionary solutions are obtained from this method suggests that it 
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Figure 2. Evolution over first 80 timesteps after flow initialization; this represents a total time interval of 1.6 
dimensionless units 

may be suited to studying impulsive phenomena such as wind gusting. After sufficient time 
has elapsed and a quasi-periodic flow sequence is achieved, then the inlet boundary profile 
can be adjusted at will in the time-domain to exhibit a prescribed time variation. The effect 
of this on the flow can then be monitored. 

In applications of studies of the wind environment of buildings it is often most useful to 
consider time-averaged flows. Field anemometers typically have a high-frequency cut-off of 
several seconds. To evaluate mean fields using the random vortex method, one must average 
over a sufficiently large number of timesteps. Figure 4 illustrates the flow averaged over 
timesteps 3 to 100 (an interval of 8 s if T = 4 s).  The average pressure distribution has also 



WIND FLOW OVER BUILDINGS 

Figure 3.  Evolution between timesteps 320 and 400 

been evaluated over the building perimeter, along with the standard deviation of this 
pressure over the averaging time-interval. (Second-order one-sided differences are applied to 
u in order to evaluate grad p from the Navier-Stokes equation; then the tangential 
component of this gradient is integrated at each point of the building surface to obtain a 
‘relative pressure’.) This pressure distribution may be used as a check on the plausibility of 
solutions, since the pressure distribution on the roof is a sensitive function of pitch angle. A 
negative value of pressure indicates suction with respect to the building surface. These 
numerical computations show general qualitative agreement to experiment, although a 
serious attempt has not yet been made to compare these numerical solutions in detail with 
wind-tunnel measurements. 
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Figure 4. Velocity field averaged over first 100 timesteps; mean relative pressure over the building surface and its 
standard deviation 

A reliable numerical calculation of the pressure gradient at the surface of a building would 
have obvious application to the problem of structural loading. The solutions to the random 
vortex method may well achieve sufficient accuracy for this: Cheer12 has reported solutions 
for the drag on a cylinder which show agreement with wind tunnel experiment within 2 per 
cent. Before the numerical calculations we have presented can be used with any reliability 
for structural applications they must be compared in detail with corresponding wind tunnel 
measurements and to site measurements (e.g. Reference 18). 

The calculation of the mean field illustrated in Figure 4 required some 26 minutes cpu on a 
DEC System 10 computer; an ultimate 500 vortex elements required 120Kbytes of 
storage. If the averaging procedure were continued over a statistically significant number of 
shedding cycles, then a steady state of the solution could be approached. Despite the 
conceptual attractions (as advocated by Roachel’) of using a time-dependent method to 
determine a mean flow, this route proves uneconomic for our purpose. We use a stationary 
technique-the control volume method-to evaluate the steady flow field. 

Application of the control volume method 

Wind tunnel models of airflow around buildings exploit the fact that the wind separates at 
fixed positions, usually at the sharp edges of the obstacle. This implies that indicators of the 
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structure of the flow (e.g. the Strouhal frequency) can be largely independent of Reynolds 
number.16 The simplified scaling procedures adequate to such modelling are discussed in 
Reference 1. (In the case of flow separation from a curved solid surface, such a simplified 
scaling procedure is not necessarily valid, since the flow may be strongly dependent on 
Reynolds number.) There is some analogy with this to be found in the problem of the 
numerical computation of flow over an obstacle with sharp edges, when control volume 
methods are used. If the separation points are fixed at the corners of a building, then it may 
be possible to determine numerically the gross features of the flow without high resolution of 
the boundary layer. 

Problems of high Reynolds number are characterized by turbulence; if the turbulence is 
homogeneous and isotropic, a crude approximation of turbulent effects may be achieved 
by increasing the laminar viscosity by some constant factor which may be determined by 
comparing computed solutions to real, well-defined flow patterns. Thus we may postulate an 
effective turbulent or 'eddy' viscosity to be 

where typically f > 1000. 
The crudeness of such an approximation is not really satisfactory for flow which is 

recirculating. A more appropriate model would require the addition of at least two 
turbulence transport equations. Semi-empirical models of turbulence such as the k--E model 
can be incorporated into control volume methods." Such models require knowledge of 
prescribed turbulence variables associated with the inlet profile (i.e. the turbulent kinetic 
energy per unit mass and its rate of dissipation). These variables must be specified in such a 
way that they reproduce the characteristics of measured wind turbulence (in particular, the 
turbulence intensity and its power spectrum.") We have not yet devised a satisfactory method 
of doing this and we resort instead to equation (23). 

The effect of non-rectangular boundaries is simulated by adjusting the surface areas of cell 
faces which are cut by grid lines. Thus cells which are totally embedded in an obstacle have 
all their areas set to zero; partially blocked cells have each of their areas set individually 
according to the local grid-obstacle geometry. Despite the coarseness of this boundary 
representation it has considerable computational advantages, since the appearance of the cell 
areas in many of the algorithm equations permits use of these equations both within the bulk 
fluid and at boundaries. 

The shear stress term to be included in equation (16) near solid boundaries may be 
computed to an accuracy sufficient for our purposes by application of the Blasius formula for 
turbulent flow over a flat plate, which may be expressed as 

7 = 0.03Re-0.2pu2 

where u is the velocity parallel to the surface at the outer edge of the boundary layer, and Re 
is a Reynolds number based on a typical building dimension. Thus we have, for cells adjacent 
to a solid boundary 

where Bi represents the occluded area (or length) of a cell face in the direction parallel to u. 

building: the inlet (and outlet) profile is that expressed by equation (22). 
The free boundaries of the flow are assumed to be undisturbed by the presence of the 
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The convergence of the momentum calculation is observed at each iteration through the 
residuals R where at the kth iteration 

Here we additionally require uF> urnin to exclude very small values of u: in the denominator. 
A pressure residual is also computed, 

Convergence is achieved when velocity and pressure residuals are simultaneously less than 
some prescribed small number. For each iteration of the momentum equation it is required 
to solve iteratively the Poisson equation (21). The convergence criteria for these 'inner' 
iterations may be related indirectly to the degree of continuity error associated with the 
external momentum calculation. 

Figure 5(a) displays a grid distribution which was used to compute the steady-state flow 
around a building form with roof pitch 30". A variable grid was chosen so that regions far 
from the building may be more coarsely represented in order to reduce the size of 
computation. The smallest cells are 1 m square so no attempt is made to resolve the surface 
boundary layer. 

The inlet flow is specified as a 'rural' boundary layer, i.e. u(y) is given by equation (22) 
with an exponent of CY = 0.16, and yg = 275 m. The reference value of u at yg = 10 m is set to 
5 m/s. The building width is 8 m and its ridge height is 6.3 m. 

A streak-line diagram of the computed stready flow is illustrated in Figure 5(b). Each 
streak represents the motion of a particle embedded in the flow over a short time interval 
(1 s), thus the streak length is proportional to local velocity. The principal features of the 
mean flow are seen to be the sharp separation at the ridge with subsequent reattachment of 
the separated layer some 60 m downstream. The inclusion of the reattachment zone in the 
solution domain makes convergence of the solution fairly slow, but it is essential if the 
leeward recirculation zone is to be properly represented. The corresponding pressure 
distribution is shown in Figure 5(c), in which the value at the origin has been arbitrarily set to 
zero. The high pressure at the windward stagnation point and the low pressure region 
corresponding to the leeward recirculation are also to be seen in the solution. 

Solution of this problem to obtain residuals less than 0.05 took four minutes to compute 
on a DEC System 10. The number of cells in the grid was 902 which gave rise to a total core 
requirement of about 85 Kbytes. 

It should be emphasized that Figures 4 and 5 are not directly comparable; Figure 4 
represents an average over 8 s of the flow development, whereas Figure 5 is a solution of the 
steady equation. In principle, the vortex method could be run for much longer periods and it 
could be expected that a steady time-averaged flow field would be obtained. As noted 
previously, this would not be economical for our purpose; the vortex method is more suited 
in the present application to elucidating the time-dependence of the flow solution. 

CONCLUSIONS 

The numerical solutions illustrated in the last section were calculated using computer 
programs of modest core and time requirements. These programs could be run on a 
mini-computer and, in principle, they could provide a basis for an efficient design tool. 
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Figure 5. Example of control volume method applied to building with roof pitch of 30": (a) grid distribution; 
(b) streakline plot; (c) global pressure contom (SI units) 
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Of course, such two-dimensional procedures as we have described can represent little 
more than a first step towards a simulation of flow around real buildings. Buildings are 
three-dimensional objects: their interaction with wind is strongly influenced by the wind’s 
angle of incidence. If numerical modelling techniques are to be made comparable to 
wind-tunnel measurement, they must be able to represent the three-dimensionality of real 
wind flow. We are presently extending the control volume method into three dimensions. In 
the future it would be useful also to adopt a three-dimensional version of the random vortex 
method to treat wind-flow problems. 

We have confined ourselves to a laminar approach to the problem. It is important now to 
introduce into the modelling some more adequate representation of the turbulence of real 
situations. Within the literature of turbulence theory there exists a number of specific 
modelling possibilities (these essentially corresponding to different closure conditions). 
However, it remains to be decided which of these best corresponds to the turbulence content 
of a building’s wind environment. 

In principle the methods we discuss can accommodate complex building forms. So far as the 
vortex method is concerned, the shape of the building is numerically specified and is quite 
arbitrary. The control volume method is particularly suited to forms with sharp edges-a 
building category which includes most forms of interest. (We note also that both methods can 
in principle treat the case of a building raised on pilotti). 

We are especially interested to investigate numerically the question of how one building 
may affect the wind environment of another. We have already applied the numerical 
methods described in this paper to a simple configuration of two buildings.21 We hope that 
the relative ease with which numerical experiments can be performed on a computer may 
eventually make possible the systematic morphological study of a large number of different 
building shapes and configurations. 
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